Reducing Offline Evaluation Bias in Recommendation Systems
نویسندگان
چکیده
Recommendation systems have been integrated into the majority of large online systems. They tailor those systems to individual users by filtering and ranking information according to user profiles. This adaptation process influences the way users interact with the system and, as a consequence, increases the difficulty of evaluating a recommendation algorithm with historical data (via offline evaluation). This paper analyses this evaluation bias and proposes a simple item weighting solution that reduces its impact. The efficiency of the proposed solution is evaluated on real world data extracted from Viadeo professional social network.
منابع مشابه
Reducing offline evaluation bias of collaborative filtering algorithms
Recommendation systems have been integrated into the majority of large online systems to filter and rank information according to user profiles. It thus influences the way users interact with the system and, as a consequence, bias the evaluation of the performance of a recommendation algorithm computed using historical data (via offline evaluation). This paper presents a new application of a we...
متن کاملStudy of a Bias in the Offline Evaluation of a Recommendation Algorithm
Recommendation systems have been integrated into the majority of large online systems to filter and rank information according to user profiles. It thus influences the way users interact with the system and, as a consequence, bias the evaluation of the performance of a recommendation algorithm computed using historical data (via offline evaluation). This paper describes this bias and discuss th...
متن کاملThresholding for Top-k Recommendation with Temporal Dynamics
This work focuses on top-k recommendation in domains where underlying data distribution shifts overtime. We propose to learn a time-dependent bias for each item over whatever existing recommendation engine. Such a bias learning process alleviates data sparsity in constructing the engine, and at the same time captures recent trend shift observed in data. We present an alternating optimization fr...
متن کاملMusic Recommenders: User Evaluation Without Real Users?
Good music recommenders should not only suggest quality recommendations, but should also allow users to discover new/niche music. User studies capture explicit feedback on recommendation quality and novelty, but can be expensive, and may have difficulty replicating realistic scenarios. Lack of effective offline evaluation methods restricts progress in music recommendation research. The challeng...
متن کاملOff-policy evaluation for slate recommendation
This paper studies the evaluation of policies which recommend an ordered set of items based on some context—a common scenario in web search, ads, and recommender systems. We develop a novel technique to evaluate such policies offline using logged past data with negligible bias. Our method builds on the assumption that the observed quality of the entire recommended set additively decomposes acro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1407.0822 شماره
صفحات -
تاریخ انتشار 2014